

Trane Engineers Newsletter Live

Evaluating Sound Data Presenters: Dave Edmonds, Dave Guckelberger, Dustin Meredith, Eric Sturm and Jeanne Harshaw (host)

Trane Engineers Newsletter Live Series

Evaluating Sound Data

Abstract

Sound data is the foundation of acoustical analysis and it is often used for comparing equipment from different manufacturers. Unfortunately not all manufacturers present sound data in the same format. This ENL will focus on clarifying sound data terms and weighting methods so that the differences in sound data presentation are apparent. Examples of the common mistakes made when comparing chillers, air-handlers, VAV units, and fan coils are discussed.

Presenters: Trane engineers Dustin Meredith, Dave Guckelberger, Eric Sturm, Dave Edmonds

After viewing attendees will be able to:

- 1. Understand how various types of sound data are generated.
- 2. Identify the differences in sound data presented for HVAC equipment (e.g. sound power, sound pressure, dBA)
- 3. How to properly evaluate sound data to ensure accuracy and sensibility (A-weighting)
- 4. How to specify sound data to compare apples-to-apples

Agenda

- Why is data confusing
- How is sound data generated
- · How is sound data commonly presented
- Problems when comparing data sets (examples)
- Summary

Presenter biographies

Evaluating Sound Data

Dustin Meredith | applications engineer | Trane

Dustin joined Trane in 2000 as a marketing engineer. In his current role as an applications engineer he specializes on airside products. His expertise includes sound predictions, fan selection, and vibration analysis. He also leads development and implementation projects for new and upcoming air-handling options. Dustin has authored various technical engineering bulletins and applications engineering manuals.

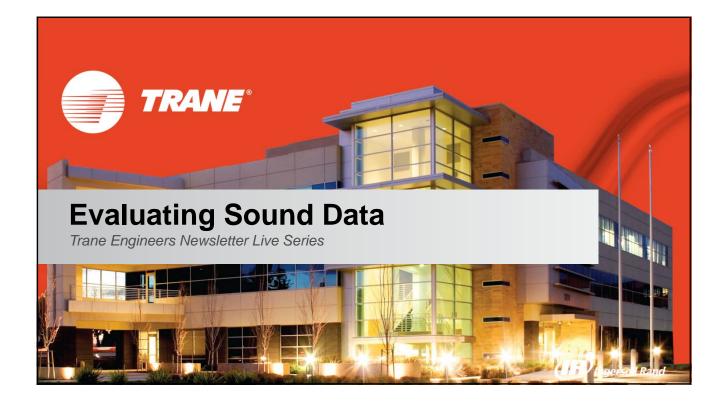
Dustin earned his BSME, BSCS and MBA degrees from the University of Kentucky. He is a corresponding member on ASHRAE TC 2.6 – Sound & Vibration Control – and ASHRAE TC 5.1 – Fans. He is a member of ASHRAE and is the primary Trane contact for AMCA.

Eric Sturm | applications engineer | Trane

Eric joined Trane in 2006 after graduating from the University of Wisconsin – Platteville with a Bachelor of Science degree in mechanical engineering. Prior to joining the applications engineering team, Eric worked in the Customer Direct Services (C.D.S.) department as a product manager for the TRACE[™] 700 load design and energy simulation application. As a C.D.S. marketing engineer he supported and trained customers globally. As the newest member to the applications engineering team, Eric's areas of expertise include acoustics and airside systems. Eric is currently involved with ASHRAE at the local and national levels serving as a member of SSPC 140, SPC 205, TC 2.5, and TC 2.6.

Dave Edmonds | acoustics & mechanics test engineer | Trane

Dave joined Trane in 2005. His 25 years of acoustics experience ranges from underwater defense, to human body vibration and human perception of noise, and automotive noise control. In his current role his primary focus is product acoustics development and laboratory data collection for both development and catalog data.


After graduating from Michigan Tech with a BSME specializing in vibrations, Dave earned an MSME at The University of Texas at Austin specializing in acoustics. He teaches an acoustics test for non-acoustics engineers called The Acoustics Road Show. He has been a member of the Acoustical Society of America since 1988.

Dave Guckelberger | applications engineer | Trane

Dave's expertise includes acoustic analysis and modeling of HVAC systems, electrical distribution system design, and the refrigeration system requirements established by ASHRAE Standard 15. He also provides research and interpretation on how building, mechanical, and fire codes impact HVAC equipment and systems. In addition to traditional applications engineering support, Dave has authored a variety of technical articles on subjects ranging from acoustics to ECM motors to codes.

Dave is a past president of the Wisconsin Mechanical Refrigeration Code Council and has served on several ASHRAE committees at the national level. After graduating from Michigan Tech with a BSME in thermo-fluids, he joined Trane as a development engineer in 1982 and moved into his current position in Applications Engineering in 1987.

"Trane" is a Registered Provider with The American Institute of Architects Continuing Education System. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Copyrighted Materials

This presentation is protected by U.S. and international copyright laws. Reproduction, distribution, display, and use of the presentation without written permission of Trane is prohibited.

© 2015 Trane, a business of Ingersoll Rand. All rights reserved.

Learning Objectives

After attending today's program, you will be able to:

- · Summarize how various types of sound data are generated.
- Identify the differences in sound data presented for HVAC equipment (e.g. sound power, sound pressure, dBA)
- Properly evaluate sound data to ensure accuracy and sensibility (A-weighting)

• Specify sound data to compare apples-to-apples

Today's Presenters

Eric Sturm Applications Engineer

Dave Edmonds Test Engineer

Dave Guckelberger

Dustin Meredith Applications Engineer Applications Engineer

Why Is Data Confusing?

Common acoustics terminology

- Sound pressure •
- Sound power
- A-weighting
- B-weighting
- C-weighting

NC •

- NCB •
- RC •
- RC Mark II

Example Sound Level Requirements

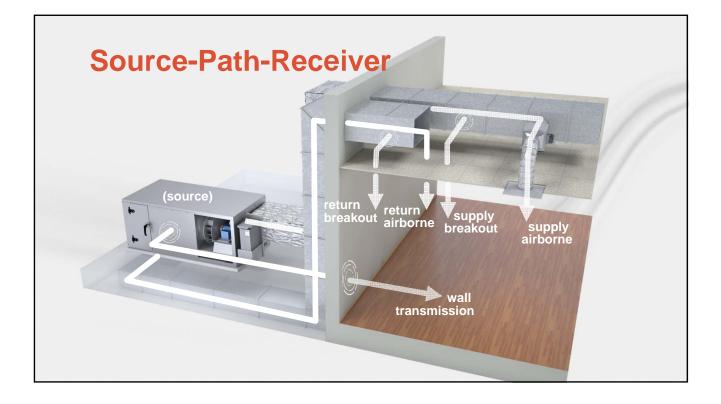
Living Area
Open-plan
Concert Hall
Patient Room
General Assembly
Classroom

Example Sound Level Requirements

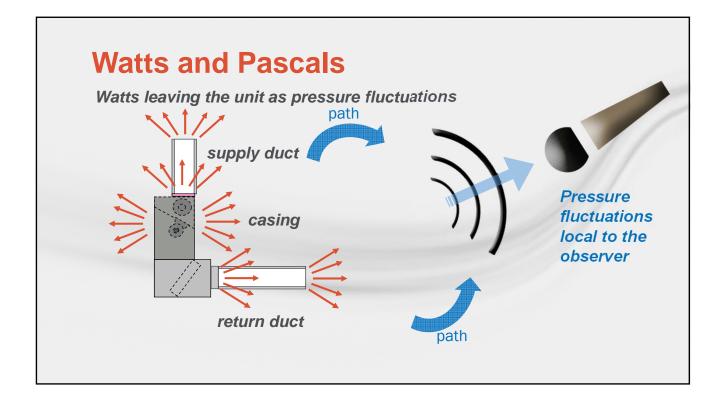
Room Type		NC	RC
Apartment	Living Area	30	30 (N)
Office Building	Open-plan	40	40 (N)
Performing Arts	Concert Hall	20	20 (N)
Hospital	Patient Room	30	30 (N)
Places of Worship	General Assembly	25	25 (N)
School	Classroom	30	30 (N)

Example Sound Level Requirements

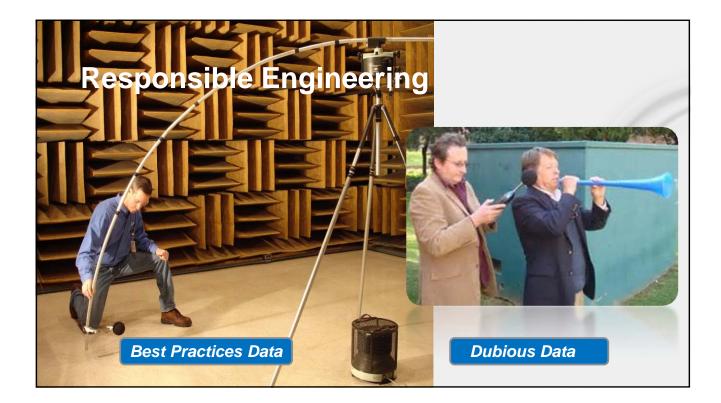
Room Type		NC	RC	dBA	dBC
Apartment	Living Area	30	30 (N)	35	60
Office Building	Open-plan	40	40 (N)	45	65
Performing Arts	Concert Hall	20	20 (N)	25	50
Hospital	Patient Room	30	30 (N)	35	60
Places of Worship	General Assembly	25	25 (N)	30	55
School	Classroom	30	30 (N)	35	60

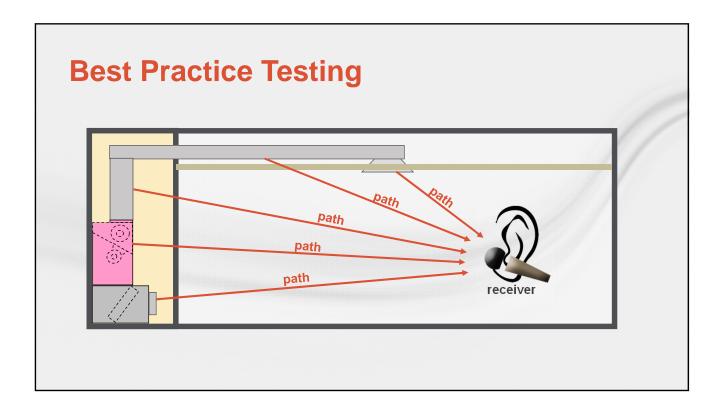

Example Manufacturer Data

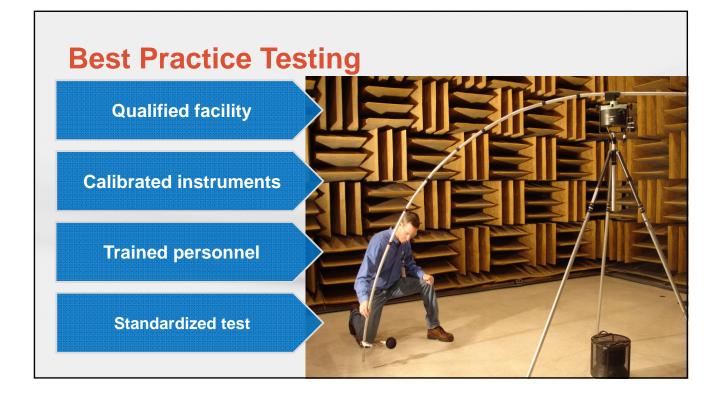
-	10m fr	Unit	Std		10m f	rom cent	er of broa	d sides o	of chiller	
Unit Size(b)	920 rpm	Size(b)	920rp			In	visiSound	(c) Optic	on	
1505	72	150S 165S	64 65	Unit	Std	Superior		Ultir	nate	
150	72	150	64 65	Size ^(b)	920 rpm	825 rpm	700 rpm	650 rpm	600 rpm	920 rpm
165 180 200	73	180	65 65			AHRI Rati	ng Point - 1	LOO% Load	1	
225	72	225	65 66	150S	72	68	63	62	60	70
275	74	275	66 67	165S	74	69	65	64	63	71
		1505	59	150	72	68	63	61	60	70
150	s 68	1655	60 51	165	74	70	63	62	60	71
150	5 65	165	5	180	73	69	63	62	60	71
18	0 69	200	6	200	72	70	64	62	60	70
22	0 69	250	6	225	72	69	64	62	60	72
21	-	300		250	73	70	64	63	61	72
	505 62	1505	F	275	74	70	66	65	64	73
-	655 64 150 59	150	Ħ	300	75	71	66	65	63	73
-	165 59 180 60 200 61	180 200 225	<u></u> ∃:			pressure le nce from uni		ef 20 micro	o Pa. Measu	rement at
-	225 5 250 6 275 6 300 6	250 275 300	T - 7	c) Sound	option is in	dicated in M	Iodel Numb	er digit 12		
1	1505	1505				it 12 = 1. Ir ate Digit 12		Superior D	igit 12 = 2.	
	1655	1655	+ -	av 52	51 48	48 48				

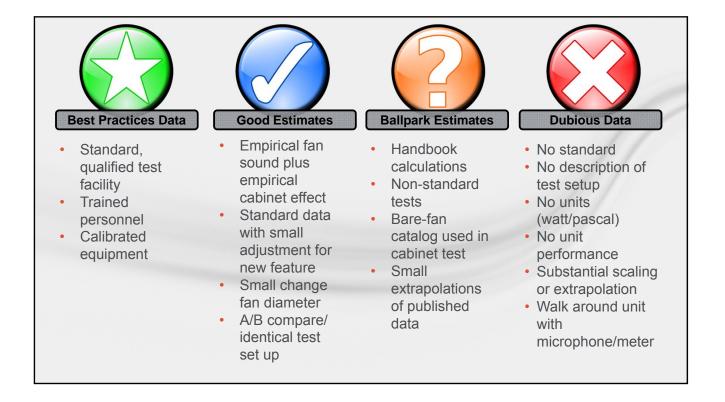

10m from ce Unit Unit Table 14. Sound and Invision 10m Table 16. So						vels (L ard ^(a)		dB) fan 92	Ornm		e levels (Lp, in dB) uperior ^(a) , max fan 825 rpm jer of broad sides of chiller
Size (b) 63 125 250 Unit 100 AHRI Ø Size(b) 63 125 100 1505 60 58 1505 55 Unit 1655 62 61 59 1655 60 57 1655 60 58 1655 60 57	n							es of cl	-		Octaves Overall 500 1000 2000 4000 8000 A Wtd ing Point - 100% Load 60 66 52 46 68
165 61 61 59 150 59 56 1505 64 180 62 61 57 165 65 55 1505 64 180 62 61 57 160 61 57 155 64 200 62 62 64 200 64 53 150 64 225 62 62 64 225 60 58 150 64 266 62 62 64 225 60 58 160 64 560 62 62 64 225 60 58 160 64 576 62 62 64 245 160 64	Unit	63	125	250		aves 1000	2000	4000		Overall A Wtd	61 67 62 54 48 69 59 66 60 52 44 68 60 68 62 52 45 70 60 68 61 53 46 69 61 68 61 53 46 69 61 68 61 54 47 70
275 63 63 6 275 61 59 200 63 300 63 63 6 300 62 59 225 66 AHE			A	HRI Ra	ting Po	oint - 10	00% Lo	oad			61 67 61 55 67 61 68 62 54 48 70 62 68 62 54 49 70 62 68 62 54 49 71
1505 60 60 50 50 56 1655 61 61 1655 59 57 300 67	150S	64	69	65	63	70	62	55	46	72	63 69 03 55 ting Point - 75% Load 58 62 56 48 45 65
150 60 60 150 59 56 165 62 61 165 60 57 1505 62 180 62 61 180 61 57 1655 62 180 62 61 180 61 57 1505 62	165S	65	69	65	64	72	64	56	48	74	59 62 57 49 47 65 57 64 57 49 39 66 57 64 57 49 39 66
200 62 61 200 61 58 225 62 62 225 60 58 165 62 250 62 62 250 60 58 180 62	150	64	69	65	62	70	64	55	46	72	56 6.2 37 40 57 61 57 6.3 57 49 40 65 55 65 55 48 40 66
275 62 63 275 61 59 200 62 300 63 63 300 61 59 5 225 63 4 AHE AHE AHE AHE AHE 500 64	165	65	69	65	62	73	66	56	48	74	59 64 57 30 40 55 63 65 59 51 48 68 64 64 59 51 48 67 64 64 59 51 48 67
1505 57 54 1505 57 54 5 1655 57 53 1655 57 53 5 300 64 150 57 53 150 57 53 5 300 64		65	70	66	63	72	64	56	49	73	61 64 58 50 47 67 Rating Point - 50% Load 55 55 49 41 43 58
150 57 53 165 57 53 1505 57 165 57 53 165 57 53 53 1505 57 180 57 54 160 57 54 54 1655 54 180 57 54 54 54 56 55	200	65	69	65	64	70	63	57	49	72	58 56 51 43 46 60 53 54 48 43 32 57 53 54 48 43 32 57
200 57 53		65	71	66	64	70	64	56	47	72	34 55 49 43 32 58 52 55 49 43 33 61 49 60 49 43 33 61
225 59 57 225 59 57 33 165 57 250 59 57 250 59 57 56 180 57 250 59 57 250 59 57 56 180 57 250 59 57 59 61 57 200 58											

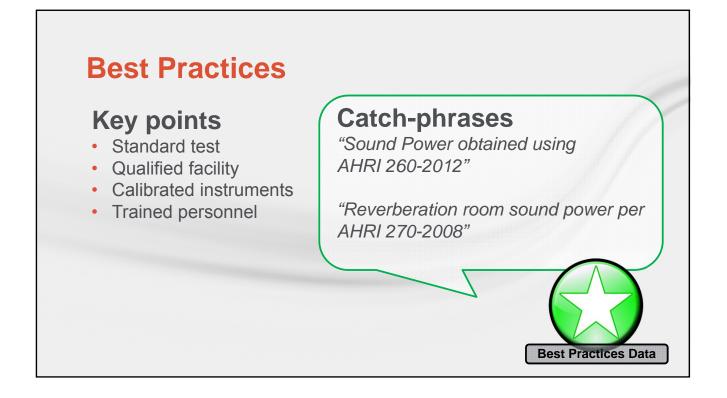
Example Manufacturer Data

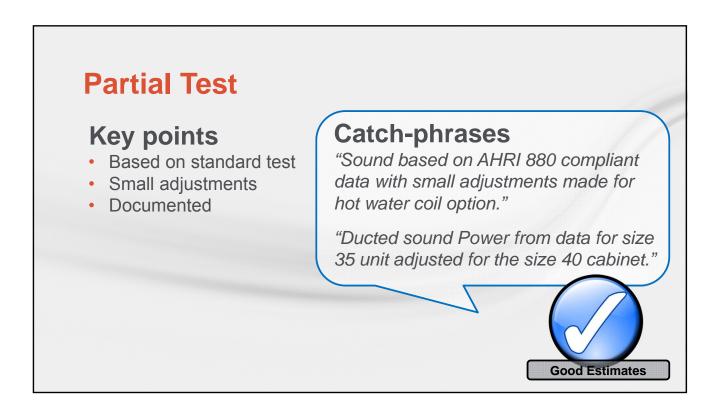

Table 4. Octave band sound power leve InvisiSound Standard ³¹ unit Tal Unit Size(b) 0 0 0 5		able 4. Octave band sound power levels — InvisiSound Standard ^(a) unit— fan 920 rpn										
1505 94 100 97 96 96 00 14 1655 95 101 98 97 98 90 14 150 94 100 97 95 98 98 1 150 94 100 97 95 98 98 1 165 95 101 98 97 97 90 10 180 95 101 98 97 97 90 11 200 95 101 98 97 96 90 11 200 95 101 98 97 96 90 20	Unit Size ^(b)											
225 95 102 99 96 90 92 250 96 102 99 98 100 90 21 275 96 102 100 98 99 90 22 300 97 103 100 99 99 91 36	,		A	HRI Ra	ating Po	oint - 10	00% Lo	ad				
AHRI Rating Point - 75% L 1505 91 95 93 95 90 82 1505 91 94 93 97 91 83 165	1303	94	100	97	96	96	88	82	74	99		
150 91 95 92 90 91 83 15 165 91 94 93 90 89 83 16 165 91 94 93 90 89 83 16 160 91 94 93 90 89 83 18	165S	95	101	98	97	98	90	84	76	100		
200 91 94 91 89 93 8 225 93 97 95 94 91 8 225 93 97 95 94 91 8 226 93 97 95 94 91 8 256 95 95 95 95 95 95 95 95 95 95 95 95 95	150	94	100	97	95	98	89	82	75	100		
275 93 97 95 97 92 8 300 93 97 95 97 92 8 AHRI Rating Point - 50%	165	95	101	98	96	98	91	83	76	100		
1505 86 89 86 93 83 1 1655 86 89 87 96 86 6 150 1655 150 1655 150 <t< td=""><td>180</td><td>95</td><td>101</td><td>98</td><td>97</td><td>97</td><td>90</td><td>83</td><td>77</td><td>100</td></t<>	180	95	101	98	97	97	90	83	77	100		
165 86 89 86 89 84 165 180 87 89 90 90 84 180 200 86 89 86 88 86 200 200 86 89 86 88 86 223		95	101	98	97	96	89	85	77	100		
225 88 91 83 88 83 250 89 92 90 97 84 275 88 91 88 98 85	225	95	102	99	98	97	89	83	75	100		
300 88 91 89 96 80 AHRI Rating Point - 25 1505 83 86 84 93 84 1455	250	96	102	99	98	100	90	84	76	102		
1655 84 86 86 96 87 150 83 86 84 86 82 165 83 86 82 84 82 165 83 86 82 84 82	275	96	102	100	98	99	90	85	76	101		
180 83 86 89 86 180 200 83 86 83 86 84 200 225 85 88 85 87 85 225	300	97	103	100	99	99	91	85	77	102		
250 85 89 86 92 81 275 85 89 85 88 85 300 85 88 87 96 87		9 74			73 66 60 74 66 60 74 66 61	63 300 8	6 88 85 8 6 88 85 8 mber Digit 12 = 3					

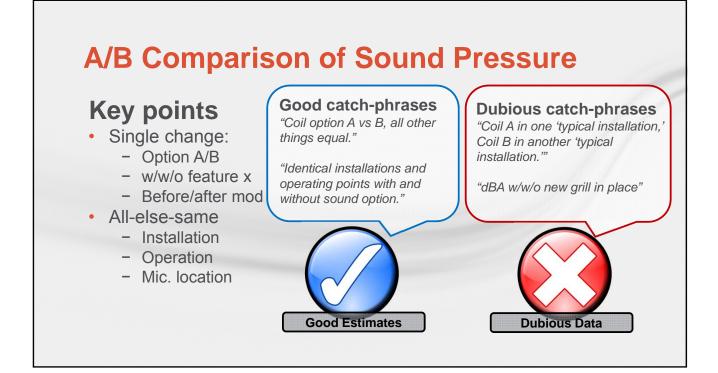




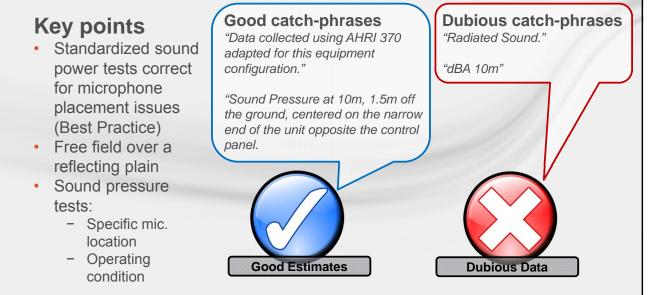


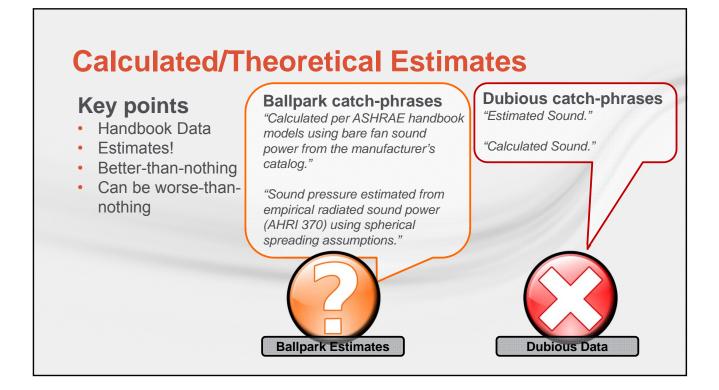


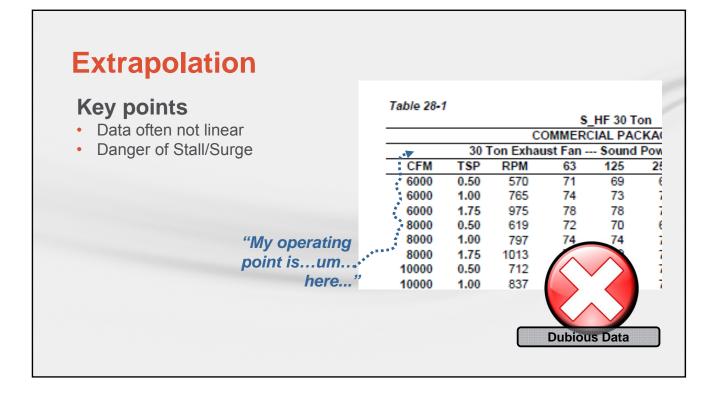


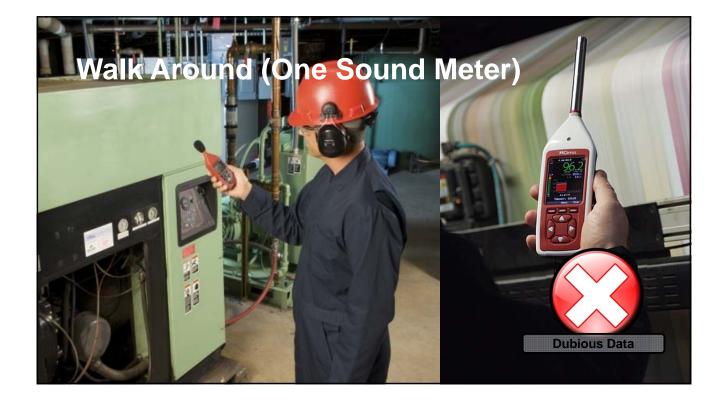

Standar	dized Tests
AHRI 260	sound rating of ducted air moving and conditioning equipment
AHRI 270	sound rating of outdoor unitary equipment
AHRI 350	sound rating of non-ducted indoor air-conditioning equipment
AHRI 370	sound rating of large outdoor HVAC&R equipment
AHRI 880	sound rating of air terminals (VAV)
AMCA 300	sound rating of fan (only) in a Reverberant Room
AMCA 320	sound rating of fan (only) using acoustic intensity method
ANSI S12.12	noise measurement using acoustic intensity method (generic)
ISO 3741	noise measurement in reverberant rooms (generic)
ISO 3745	noise measurement in anechoic rooms (generic)
ISO 3744	noise measurement in free field over a reflecting plane (generic)

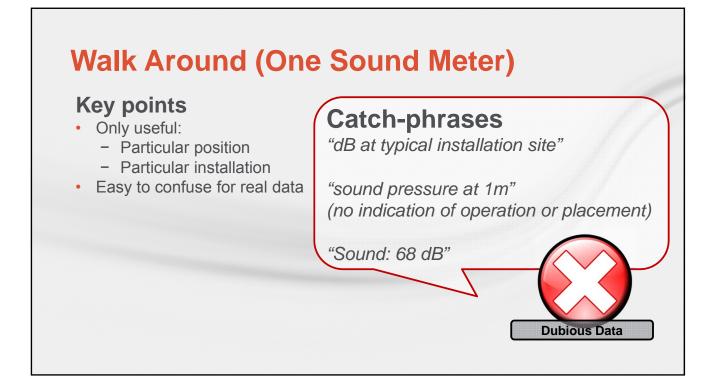


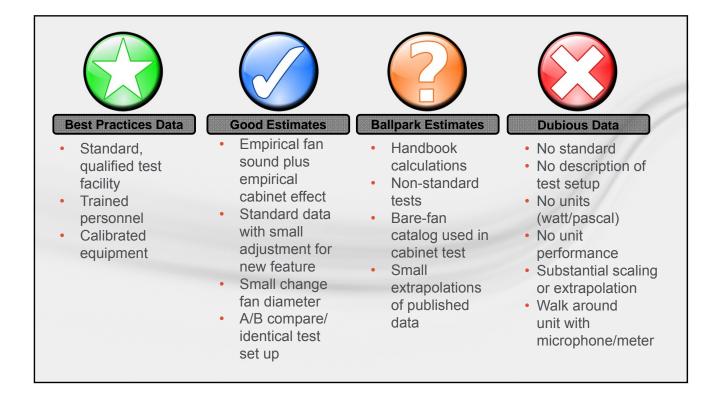


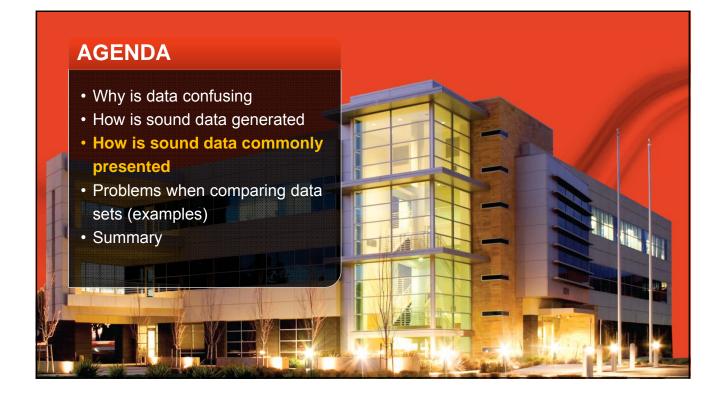


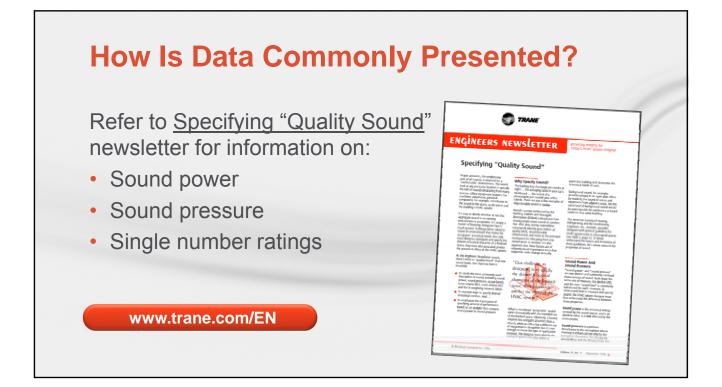


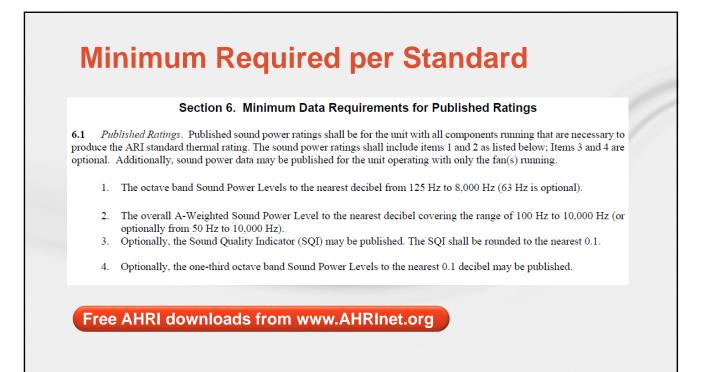








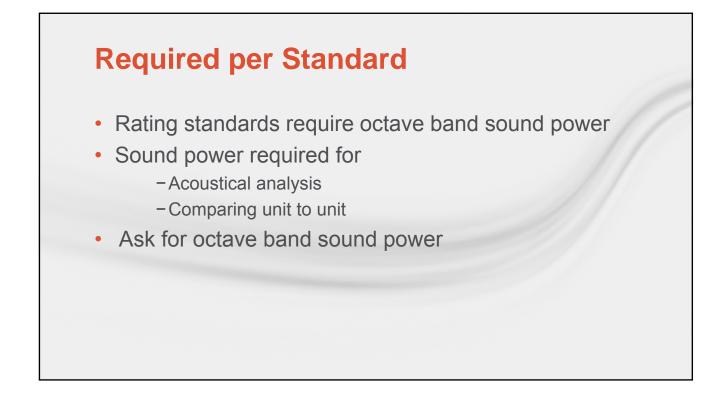


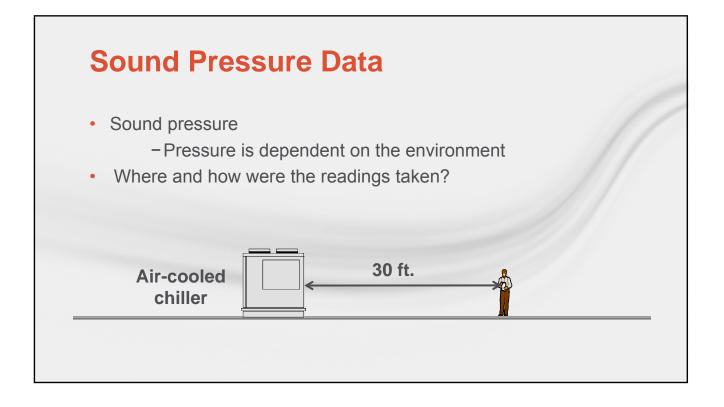


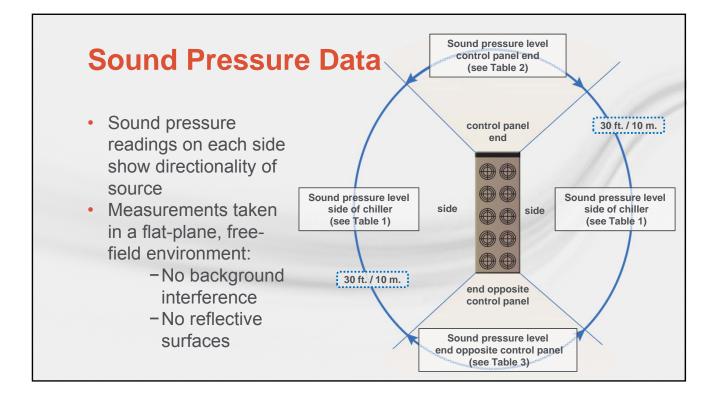
Sound Rating Standards

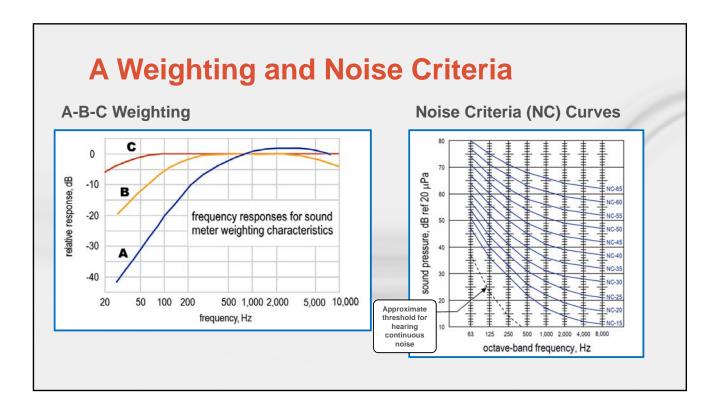
AHRI 260

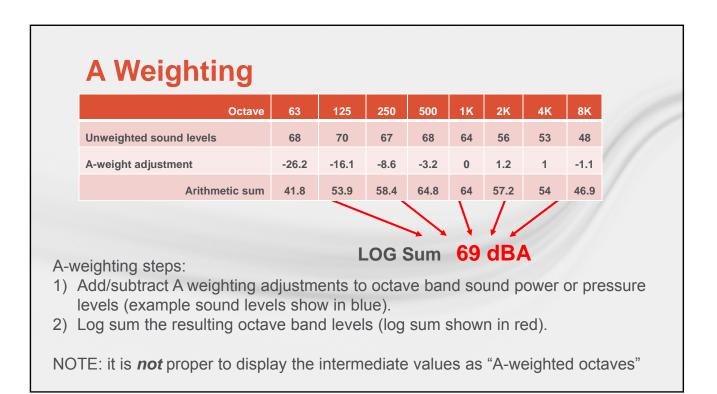
Sound Rating of Ducted Air Moving and Conditioning Equipment

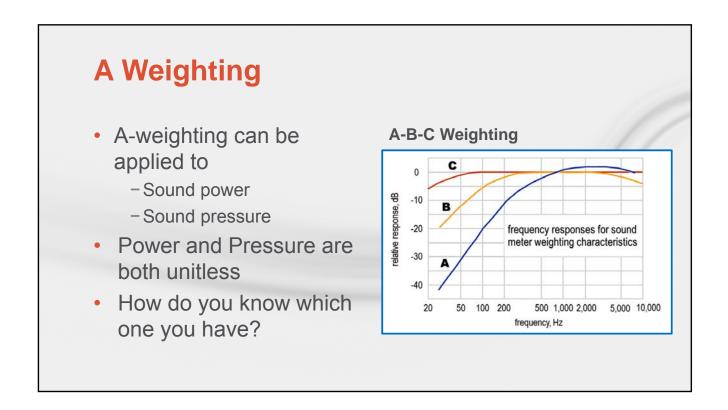

AHRI 270


Sound Rating of Outdoor Unitary Equipment


AHRI 350


Sound Rating of Non-Ducted Indoor Air-Conditioning Equipment


AHRI 370 Sound Rating of Large Outdoor HVAC&R Equipment AHRI 880 Air Terminals (VAV)



Noise Criteria

NC only applies to sound pressure

• Used to:

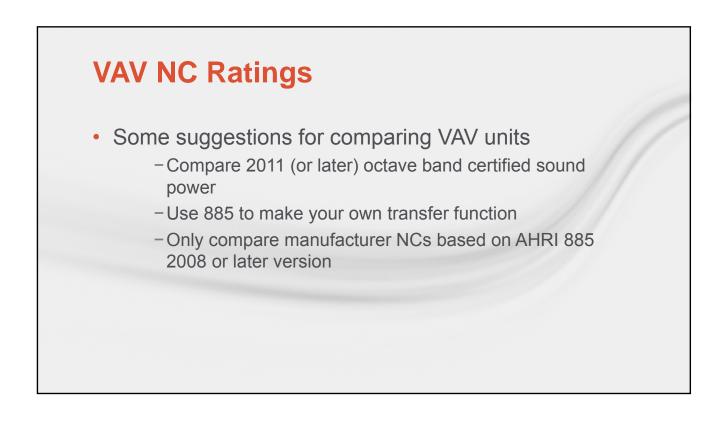
- Specify room sound requirement
- Describe measured sound in an occupied space

Noise Criteria

- Units rated in sound power
- Sound pressure required for NC
- Transfer function accounts for path details
- Unique transfer function for each environment
- Catalog NC ratings not likely to match actual NC

<section-header> VAV sound rating per AHRI 880 Sound power ratings may be certified by AHRI NC ratings not part of AHRI 880

VAV NC Ratings


- AHRI 885 Appendix E "Typical Sound Attenuation Values"
- Provides power to pressure transfer functions
- Separate function for discharge and radiated
- Discharge functions for 3 box sizes
- Selection or catalog NC is the NC for the example room (not your room)


VAV NC Ratings

- AHRI 885 updated in 2008
- Transfer functions changed

 Old transfer functions = lower NCs
- Ceiling types reduced
 - Gypsum board ceilings = lower NC
- Current version only includes mineral fiber ceiling

	NC Rat	ings					1
Octave Band	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1 kHz</u>	<u>2 kHz</u>	<u>4 kHz</u>	NC*
Discharge	74 dB	67 dB	63 dB	59 dB	56 dB	56 dB	26
Radiated	63 dB	56 dB	53 dB	49 dB	50 dB	50 dB	27
Sound power level in dB re Noise criteria (NC) estimate Discharge		owing transfer functi					
Radiated	AHRI 885-0	3 mineral fiber					
The AHRI 885 -98 t *NC levels below 15 are left	ransfer functions are the sate the sate the sate the sate the sate of the sate	ame as AHRI 885 -0	8.				

Determining dBA

A-Weight calculation	Calculat	A-weigh	ted dB (d	BA) from	known od	ctave ban	d sound	pressure	or sound	l power	levels
Octave	31.5	63	125	250	500	1K	2K	4K	8K		
Un-weighted sound levels		68	70	67	68	64	56	53	48		
A-Weight Adjustment	-39	-26.2	-16.1	-8.6	-3.2	0	1.2	1	-1.1		
Sum	-39	41.8	53.9	58.4	64.8	64	57.2	54	46.9	69	dBA

A-weighting steps:

- 1) Add/ subtract A weighting adjustments to octave band sound power or pressure levels (example sound levels show in blue).
- 2) Log sum the resulting octave band levels (log sum shown in red).

NOTE: it is not proper to display the intermediate values as "A-weighted octaves"

Some common terms

A Few Acoustics Terms You Should Know ...

Decibel. Denotes the relative difference between the intensity of one sound and the lower intensity of a reference sound; equals 10 times the common logarithm of the ratio of the two intensity levels: $dB = 10 \log_{10} (N/N_{ref})$. Commonly used reference values are 10^{-12} watt (1 pW) for sound power and 20 micropascals (20 µPa) for sound pressure.

Frequency. Number of cycles that occur in one second. (A "cycle" is the complete sequence of motion comprising a sound wave.) **Octave Band.** A frequency range with an upper limit that's twice the frequency of its lower limit.

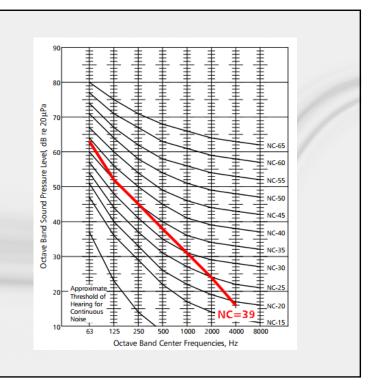
Sound. Audible emissions resulting from the displacement/vibration of molecules in an elastic medium such as air or, in an HVAC context, the building structure.

Sound Power. Acoustical energy, measured in watts, emitted by a sound source. It's a calculated value unaffected by environment and distance. Sound Pressure. An audible atmospheric disturbance that can be measured directly; its intensity is influenced by the surroundings and distance from the sound source.

Tone. A sound of distinct pitch, quality or duration with a narrow frequency range.

For more acoustics basics, consult the "Sound and Vibration" chapter of the ASHRAE Fundamentals Handbook or the Trane Acoustics in Air Conditioning manual (FND-AM-5).

Definitions


Sound Power Level (L_w). Sound power is acoustical energy that is emitted by the source, and that is neither affected by distance nor by the environment. Sound power level cannot be measured directly; instead, it must be calculated from sound-pressure measurements. Values include a reference (i.e. "1 picowatt or 10^{-12} W").

Sound Pressure Level (L_p). Sound pressure is an audible disturbance in the atmosphere that can be measured directly. Its magnitude is influenced not only by the strength of the source, but also by the environment and the distance between the source and the receiver. Sound pressure is what our ears hear and what sound meters measure. Sound pressure values include a reference (i.e. "ref 20 micro-pascals").

Determining NC

"Noise criteria" or NC curves are probably the most common singlenumber descriptor used to define the sound quality of indoor environments. The loudness along each NC chart curve is about the same. Each NC curve also slopes downward to reflect the ear's increasing sensitivity at higher frequencies.

Determining the NC value for a given set of octave band data is easy. Simply plot the octave band sound pressure level data on the NC chart ... the highest NC curve crossed by the data curve determines the NC rating.

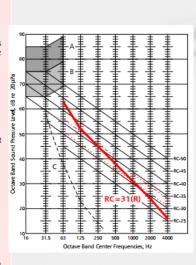
How To Determine The RC Noise Rating ...

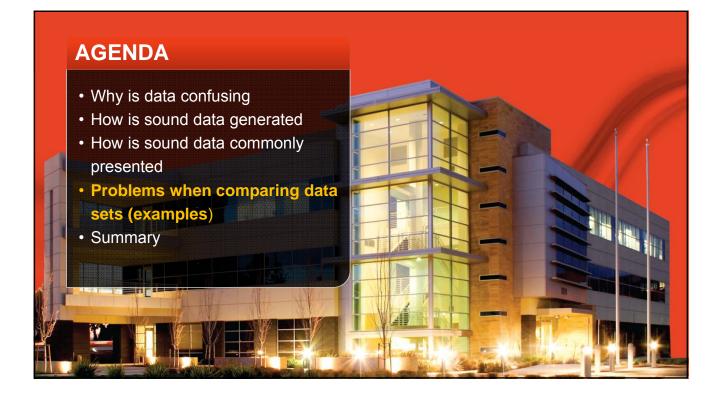
[This excerpt is paraphrased from Chapter 42, "Sound and Vibration Control," of the 1991 HVAC Applications ASHRAE Handbook.]

The RC rating of a noise is usually based on sound pressure level data at center frequencies of 31.5 to 4000 Hz and consists of two descriptors. The first descriptor is a number representing the spectrum's speech interference level (SIL), and is obtained by taking the arithmetic average of the noise levels in the 500-, 1000- and 2000- Hz octave bands. The second descriptor is a letter denoting the sound's "quality" as it might subjectively be described by an observer. These steps describe how to determine an RC rating:

- Plot the octave-band noise spectrum on an RC chart.
- 2 Calculate the SIL by arithmetically averaging the sound pressure levels at the 500-, 1000- and 2000-Hz octave band centers.
- 3 Draw a line with a slope of -5 dB per octave in the frequency range from 31.5 to 4000 Hz, and passing through 1000 Hz at the SIL calculated

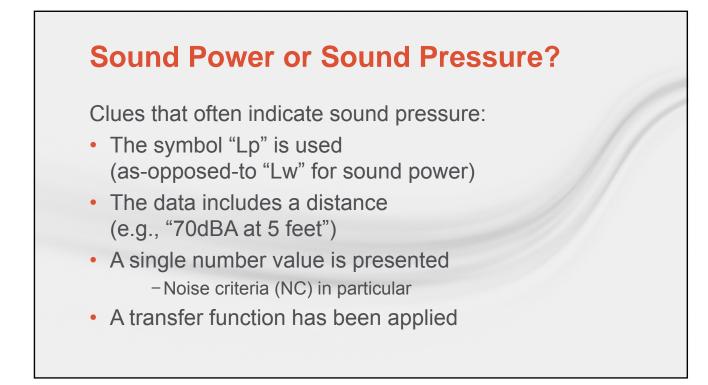
in Step 2. This is the reference curve for evaluating the sound quality of the spectrum.

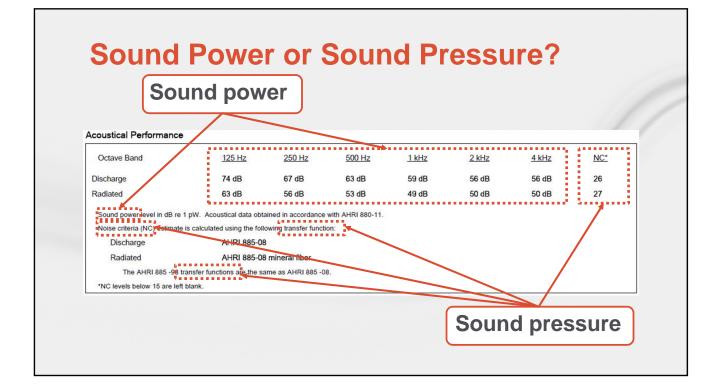

- 4 Draw one line 5 dB above the reference curve extending from the 31.5 to 500 Hz. Draw a second line 3 dB above the reference curve, extending from 1000 to 4000 Hz. The range between these two lines and the reference curve represents the noise spectrum's maximum permitted deviation above the reference curve to receive a neutral (N) rating.
- 5 Judge the sound's quality by observing how the spectrum's shape deviates from the boundary limits of the reference curve set in Step 4. Use the criteria described below to choose the appropriate letter descriptor.
- 6 Assign the spectrum an RC rating i.e., the numerical part of the rating corresponds to the level of the reference curve at the 1000-Hz octave band center; then append the letter descriptor determined in Step 5.
- Characterize the subjective quality of the room's background noise based on the following criteria.


Neutral (N). The levels in the octave bands centered at 500 Hz and below must not exceed the octave-band levels of the reference spectrum by more than 5 dB at any point in the range; the levels in the octave bands centered at 1000 Hz and above must not exceed the octaveband level of the reference spectrum by more than 3 dB at any point in the range.

Rumbly (R). The level in the octave bands centered at 500 Hz and below exceeds the octave-band levels of the reference spectrum by more than 5 dB at one or more points in the range.

Hissy (H). The level in the octave bands centered at 1000 Hz and above exceeds the octave-band level of the reference spectrum by more than 3 dB at one or more points in the range.

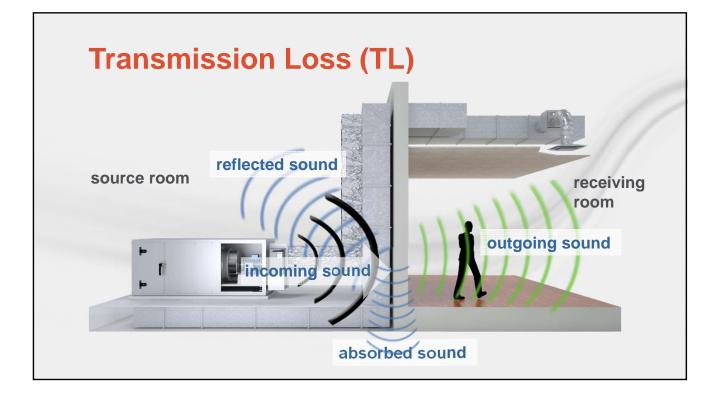

Acoustically Induced Perceptible Vibration (RV). The cross-hatched region in the 16-to-63-Hz octave band frequencies on an RC chart indicates sound pressure levels at which walls and ceiling can vibrate perceptibly — rattling cabinet doors, pictures, ceiling fixtures and other furnishings in contact with them.

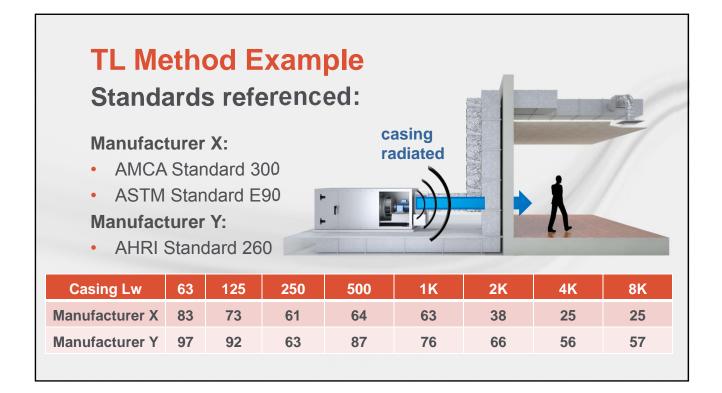


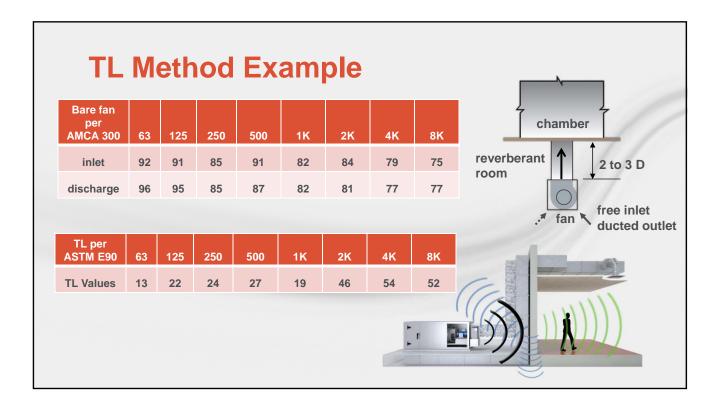

Common Problems Encountered

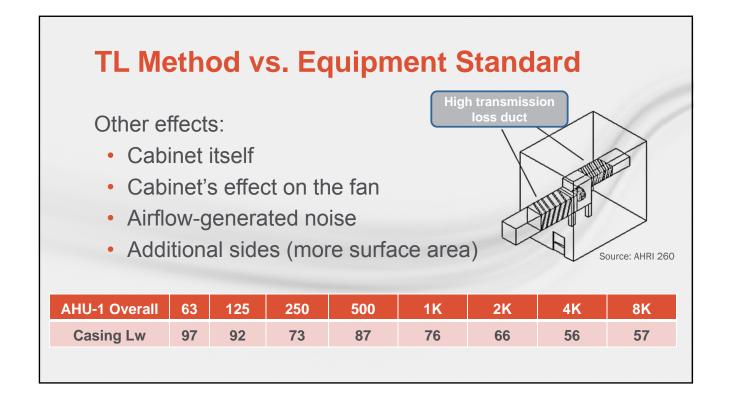
- Not clear whether the data is sound power or sound pressure
- Inappropriate or missing standards
 - Transmission Loss (TL) method example
 - -Validity of plenum calculations
 - -Misapplied measurement standards
- Different operating conditions
- Weighted octave data

Inappropriate or Missing Standards




Common approaches:


- Source data + projections
- Equipment rating standard


Projection methods:

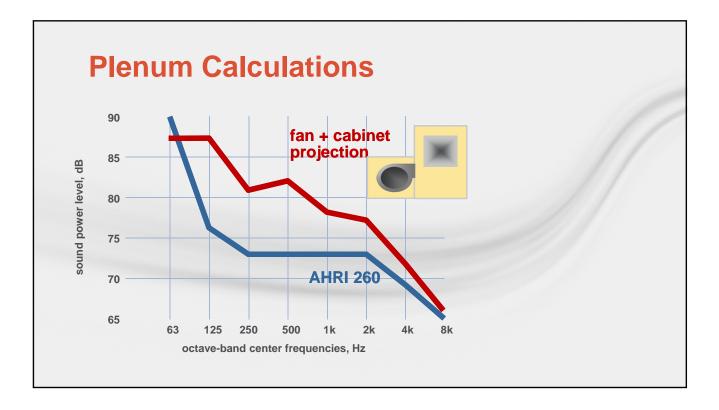
- Casing radiated component:
 - Transmission Loss (TL) Method
- Inlet or discharge components:
 Plenum calculations

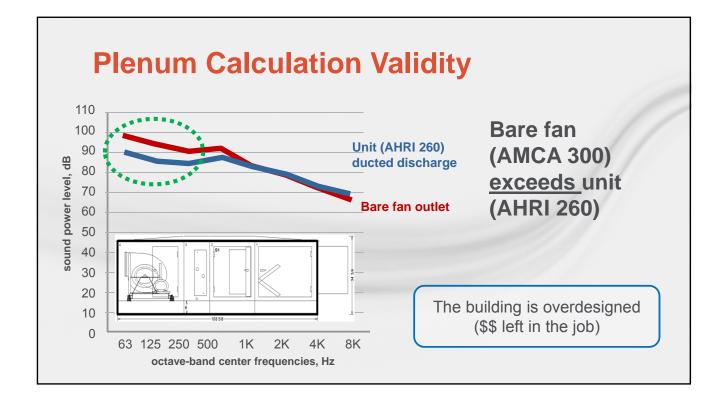


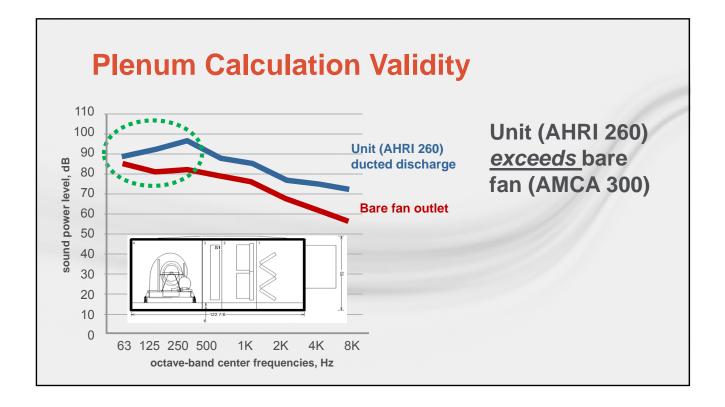
TL Method vs. Equipment Standard

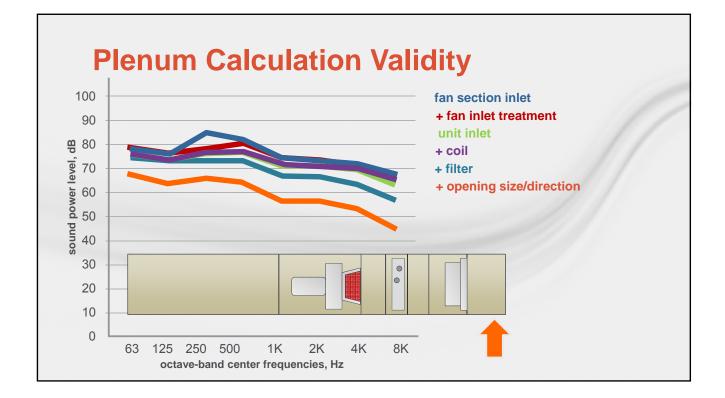
TL per ASTM E90	63	125	250	500	1K	2K	4K	8K
TL Values	13	22	24	27	19	46	54	52
Bare fan per AMCA 300	63	125	250	500	1K	2K	4K	8K
inlet	92	91	85	91	82	84	79	75
discharge	96	95	85	87	82	81	77	77
Casing Lw	63	125	250	500	1K	2K	4K	8K
TL Method	83	73	61	64	63	38	25	25
AHRI 260	97	92	73	87	76	66	56	57
difference	-14	-19	-12	-23	-13	-28	-31	-32

Inappropriate or Missing Standards



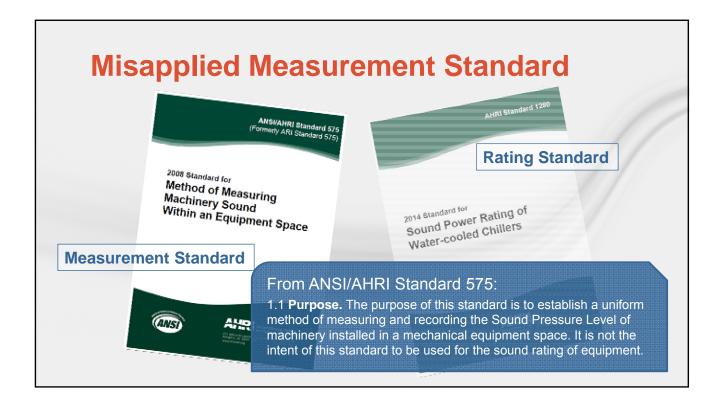

Common approaches:

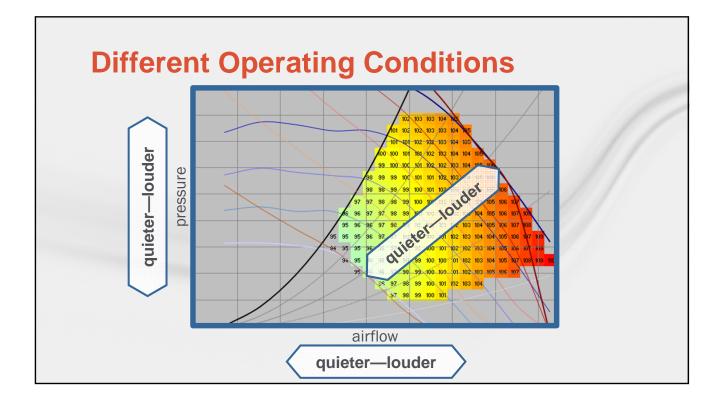

- Source data + projections
- Equipment rating standard

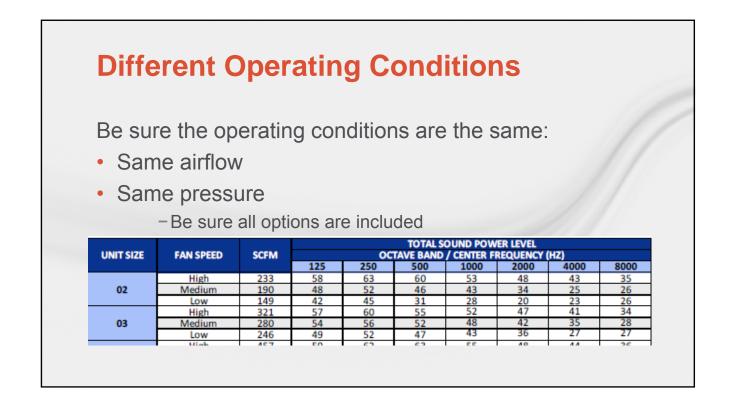

Projection methods:

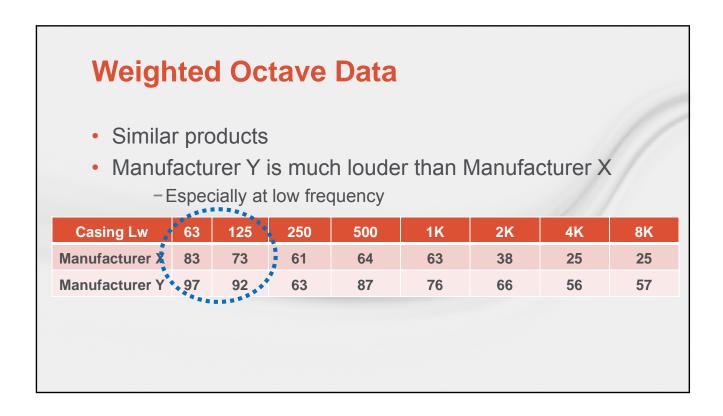
- Casing radiated component:
 - Transmission Loss (TL) Method
- Inlet or discharge components:
 - Plenum calculations

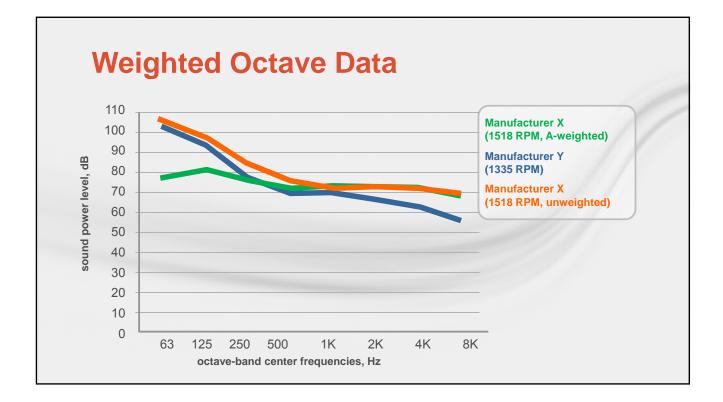
Inappropriate or Missing Standards

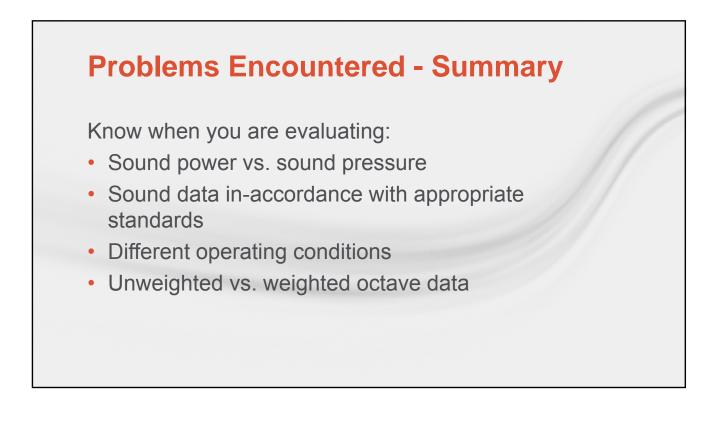


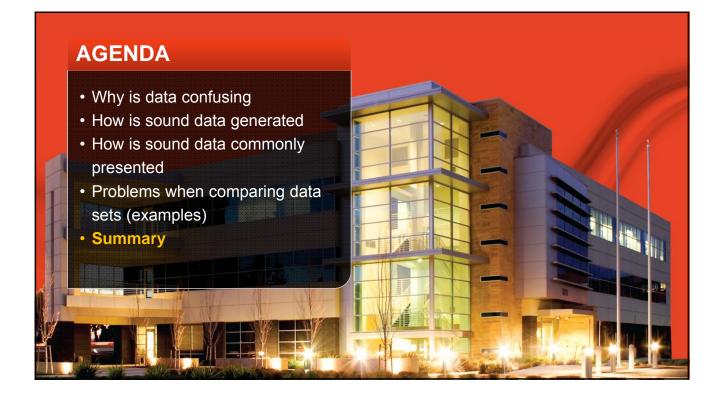

Common approaches:

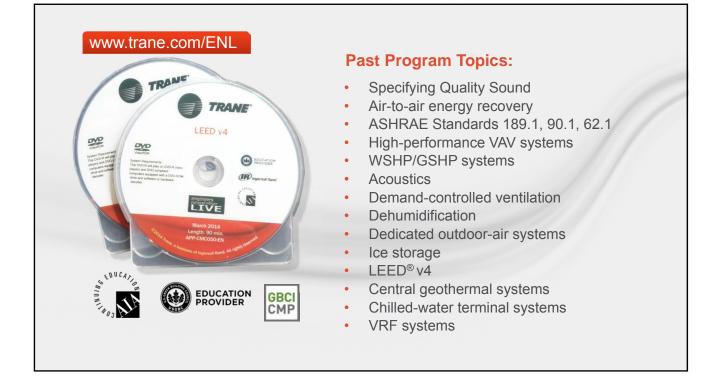

- Source data + projections
- Equipment rating standard


Projection methods:


- Casing radiated component:
 Transmission Loss (TL) Method
- Inlet or discharge components:
 - Plenum calculations






Substandard Data

- Has this data been generated using an industryagreed-upon testing method?
- Is the data being presented in a way that meets or exceeds the minimum criteria presented within this standard?
- Are labels and footnotes used to explain data, identify and justify anomalies?

Summary

- Manufactures provide sound data in a lot of different formats (e.g. NC, dBA).
- The different formats are useful for different purposes.
- Always use sound power (L_w) when comparing units.
- And always check that the correct standard, including date, is used.

- Coils Selection and Optimization
- Small Chilled-Water Systems

Special Thank You

Steve Lind

Engineers Newsletter Live - Audience Evaluation

Evaluating Sound Data

Please return to your host immediately following program.

Your Name										
Company name:										
Business address:										
Business Phone:										
Email address:										
F										
Event location:										
AIA member Number:										
PE license No.:										
How did you hear about this program? (Check all that apply) Flyers, email invitations Trane Web site Sales Representative Other. Please describe What is your <i>preferred</i> method of receiving notification for training opportunities (check one)? Email Imail										
Was the topic appropriate for the event?	Yes	No								
Rate the content of the program.	Excellent	Good	Needs Improvement							
Rate the length of the program.	Appropriate	Too long	Too short							
Rate the pace of the program.	Appropriate	Too fast	Too slow							
What was most interesting to you?										
What was least interesting to you?										

Are there any other events/topics you would like Trane to offer to provide additional knowledge of their products and services?

Additional questions or comments:

Trane Engineers Newsletter LIVE: Evaluating Sound Data APP-CMC055-EN QUIZ

- 1. Acoustic data in general are reliable. Issues only arise when they aren't labeled clearly "sound pressure" or "sound power."
 - a. True
 - b. False
- 2. Best Practices for acoustic data include:
 - a. Standardized tests, reverberant rooms, trained personnel, and an RSS (Reference Sound Source)
 - b. Standardized tests, quantified facilities, trained monkeys, and a blue plastic bugle
 - c. Standardized tests, qualified facilities, trained personnel, and calibrated instruments
 - d. Good Estimates, Ballpark Estimates, and Dubious Data
- 3. A footnote on your table says "sound pressure data collected in a free field over a reflecting plane, at a range of 10m from the broad side of unit" and has different sets of columns for stating the number of fans running, and the % of full load according to an industry standard that prescribes part-load operation. What is the best description of the quality of these data?
 - a. Best Practice (there is an industry standard involved, and the position is noted)
 - b. Good Estimate (it does not comply with a standard, but the position, environment, and operation are described well-enough that they can be compared to similar data)
 - c. Ballpark Estimate (handbook calculations were used along with standard data to produce the results)
 - d. Dubious Data (since it is a measurement using sound pressure it may have been done with a sound level meter...and the unit is clearly installed somewhere)
- 4. A footnote on your table says "sound pressure data estimated from AHRI 370 sound power assuming spherical spreading in a free field over a reflecting plane and a range of 10m from the center of the unit" and has different sets of columns for stating the number of fans running, and the % of full load according to an industry standard that prescribes part-load operation. What is the best description of the quality of these data?
 - a. Best Practice (there is an industry standard involved, and the position is noted)
 - b. Good Estimate (it does not comply with a standard, but the position, environment, and operation are described well-enough that they can be compared to similar data)
 - c. Ballpark Estimate (handbook calculations were used along with standard data to produce the results)
 - d. Dubious Data (since it is a measurement using sound pressure it may have been done with a sound level meter...and the unit is clearly installed somewhere)
- 5. NC and dBA ratings can easily be converted to octave band sound data. (False)
 - a. True
 - b. False
- 6. Octave band sound power data taken in accordance with the appropriate rating standard should be used for comparing sound data from different manufacturers.
 - a. True
 - b. False
- 7. The A-weighting procedure can be applied to both sound power and sound pressure.
 - a. True
 - b. False
- 8. The source-path-receiver model analyzes the source of sound, the various paths sound takes to reach the receiver, and the environment of the receiver to determine sound pressure at the receiver.
 - a. True
 - b. False

Evaluating Sound

May 2015

Data

Trane Engineers Newsletter Live program

Bibliography

Industry Standards and Handbooks

available to purchase from < <u>www.ashrae.org/bookstore</u> > or <<u>www.ahrinet.org</u>>

- Air-Conditioning, Heating, and Refrigeration Institute. 2012. AHRI Standard 260-2012: Sound Rating of Ducted Air Moving and Conditioning Equipment. Arlington, VA: AHRI.
- Air-Conditioning, Heating, and Refrigeration Institute. 2008. AHRI Standard 270-2008: Sound Performance Rating of Outdoor Unitary Equipment. Arlington, VA: AHRI.
- Air-Conditioning, Heating, and Refrigeration Institute. 2012. AHRI Standard 275-2010: Application of Outdoor Unitary Equipment A-Weighted Sound Power Ratings. Arlington, VA: AHRI.
- Air-Conditioning, Heating, and Refrigeration Institute. 2008. AHRI Standard 350-2008: Sound Performance Rating of Non-Ducted Indoor Air-Conditioning Equipment. Arlington, VA: AHRI.
- Air-Conditioning, Heating, and Refrigeration Institute. 2011. AHRI Standard 370-2011: Sound Performance Rating of Large Air-Cooled Outdoor Refrigerating and Air-Conditioning Equipment. Arlington, VA: AHRI.
- Air-Conditioning, Heating, and Refrigeration Institute. 2011. AHRI Standard 880-2011: Performance Rating of Air Terminals. Arlington, VA: AHRI.
- Air-Conditioning, Heating, and Refrigeration Institute. 2011. AHRI Standard 885-2008: Procedure for Estimating Occupied Space Sound Levels in the Application of Air Terminals and Air Outlets. Arlington, VA: AHRI.
- ASHRAE. 2013. ASHRAE Handbook—Fundamentals, Chapter 8 (Sound and Vibration Control). Atlanta, GA: ASHRAE.
- Schaffer, M. 2005. *Practical Guide to Noise and Vibration Control for HVAC Systems.* Atlanta, GA: ASHRAE.

Trane Publications

available to purchase from <<u>www.trane.com/bookstore</u>>

- Trane. "Fundamentals of HVAC Acoustics" *Air Conditioning Clinic*. TRG-TRC007-EN. March 2004.
- Guckelberger, D. and B. Bradley. *Acoustics in Air Conditioning* application manual. ISS-APM001-EN. April 2006.

Trane Engineers Newsletters

available to download from <<u>www.trane.com/engineersnewsletter</u>>

Trane Engineers Newsletter Live program

Bibliography

Guckelberger, D. and B. Bradley. "Sound Ratings and ARI Standard 260" Engineers Newsletter 29-1. 2000.

Guckelberger, D. and B. Bradley. "Specifying Quality Sound" *Engineers Newsletter* 25-3. 1996.

Trane Engineers Newsletter LIVE!

Specifying Quality Sound, APP-CMC002 -EN (2000).

<<u>www.trane.com/ContinuingEducation</u>>

Analysis Software

Trane Acoustics Program (TAP[™]). Trial software available at < www.traneCDS.com>